ACIDS, BASES AND SALTS

Definition of an acid	What causes the acidic properties of acids?
An acid is a compound which when dissolved in water	The hydrogen ions (H+) cause the acidic properties and these are
produces hydrogen ions as the only positively charged	formed in the presence of water.
ions	

Another term to refer to an acid	Why an acid is also called a proton donor?
An acid is called a <u>proton donor</u>	It's because an acid provides protons or hydrogen ions (H+) to other
	substances during the reaction.

Substance to which an acid provides protons is	A base is then called a	Why the base is called a proton acceptor?	Equation for the reaction between acid and base
a BASE.	PROTON ACCEPTOR	Because the base accepts hydrogen ions from acids	$H^{+}_{(aq)} + \overline{O}H_{(aq)} \longrightarrow H_{2}O_{(l)}$

Common laboratory a	nmon laboratory acids These three common laboratory acids are also called acids? Why these acids are also called		Why these acids are also called mineral acids?
Hydrochloric acid	HC <i>l</i>		They are derived from mineral salts ie chlorides for
Sulphuric acid	H ₂ SO ₄	MINERAL ACIDS	HCl, sulphates for H ₂ SO ₄ and nitrates for HNO ₃
Nitric acid	HNO_3		

Other mineral known	acids	Mineral salts from which the acid is derived	Organic acids known	Naturally occurring acids
Sulphurous acid	H_2SO_3	Derived from sulphites	Ethanoic acid	CITRIC ACID from lemons
Carbonic acid	H ₂ CO ₃	Derived from carbonates	(CH₃COOH)	TARTARIC ACID from grapes
Phosphoric acid	H ₃ PO ₄	Derived from phosphates		ACETIC ACID from vinegar
Nitrous acid	HNO_3	Derived from nitrites	Methanoic acid	LACTIC ACID from sour milk
			(HCOOH)	Hydrochloric acid from digestive juices

Whenever an acid is dissolved in	Term given to the number of hydrogen	Definition of basicity of an acid
water, it produces	ions produced by one molecule of an acid	

HYDROGEN IONS	BASICITY OF AN ACID		BASICITY of an acid is the <u>number of</u>
			<u>hydrogen ions</u> produced by <u>one</u>
			molecule of an acid in aqueous
			solution.
Basicity can also be defined as		Categorization of	acids depending on basicity
BASICITY of an acid is the maximum <u>number of hydrogen ions</u>		Monobasic acids	
produced by one molecule of an acid when dissolved in water.		Dibasic acids	
		Tribasic acids	

Definition of	Its basicity	Examples of acids	Ionization equations of acids
Monobasic acid is an acid whose one		Nitric acid	$HNO_{3(aq)} \longrightarrow H^+_{(aq)} + NO_{3(aq)}$
molecule can produce a maximum of one	Basicity of	Hydrochloric acid	$HCl_{(aq)}$ \longrightarrow $H^+_{(aq)}$ + $Cl^{(aq)}$
hydrogen ion when dissolved in water.	monobasic	Nitrous acid	$HNO_{2(aq)} \longrightarrow H^+_{(aq)} + NO_{2(aq)}$
OR	acids is ONE	Ethanoic acid	$CH_3COOH_{(aq)} \longrightarrow H^+_{(aq)} + CH_3COO_{(aq)}$
Monobasic acid is an acid whose one		Hypochlorous acid	$HOCl_{(aq)} \longrightarrow H^+_{(aq)} + OCl_{(aq)}$
molecule can produce a maximum of one hydrogen ion when in aqueous solution.		Methanoic acid	$HCOO I_{(aq)} \longrightarrow H^+_{(aq)} + HCOO_{(aq)}$
ngarogen wn when in aqueous solution.		Have general formula of HX	
Dibasic acid is an acid whose one		Sulphuric acid	$H_2SO_{4(aq)} \longrightarrow 2H^+_{(aq)} + SO_4^{2-}_{(aq)}$
molecule can produce a maximum of	Basicity of	Carbonic acid	$H_2CO_{3(aq)} = 2H^+_{(aq)} + CO_3^{2-}_{(aq)}$
two hydrogen ions when dissolved in	Dibasic acids	Sulphurous acid	$H_2SO_{3(aq)} = 2H^+_{(aq)} + SO_3^2_{(aq)}$
water.	is TWO		The double half arrows () imply that the
OR		Have general formula	ionization of such an acid is reversible.
<u>Dibasic acid</u> is an acid whose one		of H ₂ X	Double half arrows () mainly apply to weak
molecule can produce a maximum of two		_	acids
hydrogen ions when in aqueous			
solution.			
<u>Tribasic acid</u> is an acid whose one		Phosphoric acid	$H_3PO_{4(aq)} = 3H^+_{(aq)} + PO_4^{3-}_{(aq)}$

molecule can produce a maximum of three hydrogen ions when dissolved in water. OR Tribasic acid is an acid whose one molecule can produce a maximum of three hydrogen ions when in aqueous solution.	Tribasic acids is THREE	Have general formula of H₃X	Important note on basicity of an acid Basicity of an acid is not necessarily the number of hydrogen atoms contained in one molecule of the acid. Basicity refers to the number of hydrogen atoms capable of ionization in an acid for example; In CH ₃ COOH, its only one hydrogen atom that can ionize. The other three hydrogen atoms are incapable of ionization, THUS CH ₃ COOH has basicity 1
--	--------------------------------	---------------------------------------	---

TYPE OF ACIDS	DEFINITION 1		DEFINITION 2
Strong acids	A strong acid is an acid which when dissolved in water forms hydrogen ions from all the ionizable hydrogen in it.		A strong acid is an acid which completely ionizes in dilute solution.
Weak acids	A weak acid is an acid which when dissolved in water produces few hydrogen ions from the ionizable hydrogen it contains.		A weak acid is an acid which only slightly ionizes in aqueous solution.
Examples of strong acids		Ionization equation for th	he acid when dissolved in water
Hydrochloric acid		$HCl_{(aq)} \longrightarrow H^{+}_{(aq)} +$	$\operatorname{C}^{l^{-}}{}_{\operatorname{(aq)}}$
Sulphuric acid		$H_2SO_{4(aq)} \longrightarrow 2H^{+}_{(aq)} + SO_4^{2-}_{(aq)}$	
Nitric acid		$HNO_{3(aq)} \longrightarrow H^{+}_{(aq)} + I$	VO ₃ - (aq)

Examples of weak acids	Ionization equation for the acid when dissolved in water
carbonic acid	$H_2CO_{3(aq)} = 2H^+_{(aq)} + CO_3^{2-}_{(aq)}$
phosphoric acid	$H_3PO_{4(aq)} = 3H^+_{(aq)} + PO_4^{3-}_{(aq)}$
Ethanoic acid	$CH_3COOH_{(aq)} \longrightarrow H^+_{(aq)} + CH_3COO_{(aq)}$
Methanoic acid	$HCOOH_{(aq)} \longrightarrow H^+_{(aq)} + HCOO_{(aq)}$

	PROPE					
	PHYSICAL PROPERTIES				CHEMICAL PROPERTIES	
		t Ci	Chemical properties of acids are those behaviours of acids when the			
	T	seen, felt and smel	t.		are involved in chemical reactions.	
1.	Have a sour and sha	arp taste		1.	Reaction with carbonates and hydrogencarbonates.	
					Examples illustrated by equations	
					$Na_2CO_{3(s)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$	
					$K_2CO_{3(s)} + 2HCl_{(aq)} \longrightarrow 2KCl_{(aq)} + H_2O_{(1)} + CO_{2(g)}$	
2.	J			2.	Reaction with oxides and hydroxides	
	Definition of an indic					
	An indicator is a sub	ostance that has d	ifferent colours			
	in acidic and alkalin			_		
	Indicator	Colour in acidic solution	Colour in alkaline solution			
	Phenolphthalein	Colourless	Pink	1		
	Methyl orange	Pink	Yellow]		
	Red litmus	Red	Blue]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Blue litmus	Red	Blue	╛	Tractiqaqj · 1120[]	
3.	Dilute acids are colo	urless solutions.		3.	Reaction with metals	
4.	4. Concentrated acids are oily liquids eg concentrated					
	sulphuric acid.	<i>y</i> 1 0				
					Examples illustrated by equations	
					$Mg_{(s)}$ + $H_2SO_{4(aq)}$ \longrightarrow $MgSO_{4(aq)}$ + $H_{2(g)}$	
	STA	TEMENT(S)		-	REASON(S)	

When a piece of aluminium foil is placed in a test tube containing cold dilute hydrochloric acid, no reaction occurs.	BECAUSE	A thin protective layer forms on aluminium as soon as the metal is exposed to moist air, which prevents any reaction.
When a piece of aluminium foil is placed in a test tube containing cold dilute sulphuric acid, no reaction occurs.	BECAUSE	A thin protective layer forms on aluminium as soon as the metal is exposed to moist air, which prevents any reaction.
If a piece of aluminium foil is placed in a test tube containing warm acid, a reaction occurs after a short while.	BECAUSE	The oxide layer on aluminium dissolves in the warm acid exposing the metal which reacts with the acid.
Copper does not liberate hydrogen with dilute acids.	BECAUSE	Copper is below hydrogen in the electrochemical series, thus cannot displace it from dilute acids.
Nitric acid does not liberate hydrogen with nitric acid except magnesium.	BECAUSE	Nitric acid is a strong oxidizing agent. It oxidizes the hydrogen formed immediately into water.

NOTE;

Magnesium only reacts with nitric acid when it is very dilute.

Mg(s) + $2HNO_{3(aq)}$ \longrightarrow $Mg(NO_3)_{2(aq)}$ + $H_{2(g)}$

BASES AND ALKALIS

Definition of a base	In general terms, bases are;	A reaction where an acid reacts with a base is called
A base is a substance which reacts	Oxides of metals	
with an acid to form a salt and	Hydroxides of metals	NEUTRALIZATION REACTION
water only.	Ammonium hydroxide	

Definition of neutralization;

Neutralization is a reaction in which an acid reacts with a base to form a salt and water only.

Many bases exist but only a few are soluble in water

Examples of bases that are soluble in water		These soluble bases are called	Alkalis are also called		
Sodium hydroxide	NaOH				
Potassium hydroxide	КОН	ALKALIS	SOLUBLE BASES		
Calcium hydroxide	Ca(OH) ₂				
Aqueous ammonia NH ₄ OH		Alkalis are categorized into ST	RONG and WEAK alkalis		

Definition of alkalis;

Alkalis are substances which when dissolved in water produce hydroxide ions as the only negatively charged ions.
5 OLGC CHEMISTRY DEPT 2024 MOR 0775 240 246P a.g.e

TYPES OF ALKALIS

STRONG ALKALIS	WEAK ALKALIS
These are electrovalent compounds that completely ionize in	These are covalent compounds that partly ionize in aqueous solution and their ionization is reversible.
both aqueous solution and in solid state.	
Examples of strong alkalis	Example of weak alkalis
1. Sodium hydroxide solution	1. Aqueous ammonia
$NaOH_{(aq)} \longrightarrow Na^{+}_{(aq)} + \overline{O}H_{(aq)}$	It is also called <i>ammonia solution</i>
2. Potassium hydroxide solution	Aqueous ammonia is also called <i>ammonium hydroxide solution</i>
$KOH_{(aq)} \longrightarrow K^{+}_{(aq)} + \overline{O}H_{(aq)}$	
3. Calcium hydroxide solution	$NH_{3(g)}$ + $H_2O_{(l)}$ = $NH_4^+_{(aq)}$ + $\bar{O}H_{(aq)}$
$Ca(OH)_{2(aq)}$ $Ca^{2+}_{(aq)}$ + $2OH_{(aq)}$	NB. All amines are weak bases/ weak alkalis

PROPERTIES OF ALKALIS				
Physical properties	Chemical properties			
Have a bitter taste	React with acids to form a salt and water only $NaOH_{(aq)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(l)}$			
Have a soapy feeling to touch	Alkalis precipitate insoluble metallic hydroxides from solutions of			
Change colours of indicators	their salts.			
Form colourless solutions	$2\text{NaOH}_{(aq)} + \text{Pb(NO}_3)_{2(aq)} \longrightarrow \text{Pb(OH)}_{2(s)} + 2\text{NaNO}_{3(aq)}$			

COLOUR OF METAL HYDROXIDES

Metal hydroxide	Colour
Potassium hydroxide	White
Sodium hydroxide	White
Calcium hydroxide	White
Magnesium hydroxide	White
Zinc hydroxide	White
Aluminium hydroxide	White
Lead (ii) hydroxide	White
Copper (ii) hydroxide	Blue
Iron (ii) hydroxide	Green
Iron (iii) hydroxide	Brown

PH SCALE OF ACIDITY AND ALKALINITY

pH scale	pH is related to	pH number
----------	------------------	-----------

Is a scale of numbers from	*	DROGEN ION concentration in		of the hydrogen ion
express acidity and alkali	nity solu	ation	concentration	n
pH 1	pH 2 – pH 6	pH 7	pH 8 – pH 13	pH 14
Strong acid	Weak acid	Neutral	Weak alkali	Strong alkali
Dilute sulphuric acid	Lemon juice (pH 2) Sodium chloride	Baking powder (pH	9) Sodium hydroxide
Dilute nitric acid	Sour milk (pH 5)	Pure water	Wood ash (pH 10)	Potassium hydroxide

_		A	CID			N	EUTF	RAL		ALK	ALINE	≣, or "	BASI	C"
-	Increasi	ingly aci	id				1	<u>'</u> _			ı	ncreasin	gly basic	→ '
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Battery Acid	Stomach Acid (Hydrochloric)	Lemon Juice, Vinegar	Coke and Pepsi Grapefruit and Orange Juice	Apples, Dr. Pepper Soda Tomato Juice, Beer	offee,	Healthy Skin, Hair and Nails Urine, Saliva, Milk	"Pure" Water, Blood	Shampoos (7.0 to 10.0) Baking Soda, Seawater, Eggs	Perm Solutions (8.5 to 9.5) - Toothpaste, Hand Soap	Milk of Magnesia, Mild Detergent	Household Ammonia and Cleaners	Soapy Water Hair Straighteners (11.5 to 14.0)	Bleach, Oven Cleaner	Liquid Drain Cleaner, Caustic Soda

NOTE	Acidic solutions have pH values less than seven. The smaller the pH value, the more acidic the solution is ie the larger
1	the concentration of hydrogen ions.
NOTE	When distilled water is added to an acid, the pH value of the acid increases towards seven. The solution becomes less
2	acidic.
NOTE	Pure water and some salt solutions have a pH of seven.
3	

NOTE	Any solution of pH greater than seven is alkaline. The higher the pH value, the more alkaline the solution is ie the
4	larger the concentration of hydroxyl or hydroxide ions.
NOTE	When distilled water is added to an alkaline solution, the pH value of the alkali decreases towards seven. The solution
5	becomes less alkaline.

UNIVERSAL INDICATOR

Definition			Forms in which universal indicator occurs			Uses of universal indicator			
Universal indicator is a mixture of indicators.		xture of	✓ In solution ✓ In paper fo			Determines whether the solution is acidic of alkaline. Used to determine the degree of acidity and alkalinity.			
pH scale	1 -2	3	4	5	6 - 8		9 - 10	11 - 12	13 - 14
Colour	Red	Pink	Brown	Yellow	Green	l	Blue	Indigo	Violet

SIGNIFICANCE OF pH MEASUREMENTS

- 1. It helps to know that the final product in soap industry is neutral.
- 2. Too acidic soils are harmful in agriculture, and this can be determined by measuring the pH of the soil.
- 3. Various drugs are prepared at pHs which must be determined

SALTS

DEFINITION OF SALT	TYPES OF SALTS		
A salt is a substance formed when <u>all</u> or <u>part</u> of the replaceable	Acid salts	Normal salts	
hydrogen of an acid is replaced by a metal or metallic radical.			
Definition of normal salt	Definition of acid salt		
A normal salt is a salt formed when <u>all</u> the replaceable hydrogen	An acid salt is a salt formed when <u>part</u> of the replaceable		
of an acid is replaced by a metal or metallic radical.	hydrogen of an acid is replaced by a metal or metallic radical.		
Examples of normal salts	Examples of acid salts		
✓ Sodium sulphate	✓ Calcium hydrogencarbona	ute	
✓ Sodium carbonate	✓ sodium hydrogencarbonate		
✓ Potassium nitrate	✓ Calcium hydrogensulphate		
✓ Potassium sulphate	✓ Potassium hydrogencarbonate		
✓ Calcium nitrate	✓ Calcium hydrogenphospha	ate	
✓ Aluminium sulphate	✓ Magnesium hydrogencarbonate		

Formation of a normal salt	Formation of an acid salt	
Zinc granules reacting with dilute sulphuric acid.	Sodium chloride reacting with concentrated sulphuric acid.	
$Zn_{(s)}$ + $H_2SO_{4(aq)}$ $ZnSO_{4(aq)}$ + $H_{2(g)}$	$H_2SO_{4(l)}$ + $NaCl_{(s)}$ — NaHSO _{4(aq)} + $HCl_{(g)}$	

STATEMENT(S)		REASON(S)
Monobasic acids do not form acid salts	BECAUSE	Monobasic acids contain only one atom of replaceable
		hydrogen per acid molecule.
Sodium ethanoate, CH ₃ COONa is a normal salt.	BECAUSE	The hydrogen it contains does not form ions and cannot be
		replaced by a metal

TYPES OF SALTS AND ACIDS FROM WHICH THEY ARE FORMED				
ACID	TYPE OF SALT		EXAMPLE OF THE SALT	
Sulphuric acid	Sulphates		Iron (ii) sulphate	
Hydrochloric acid	Chlorides		Sodium chloride	
Carbonic acid	Carbonates		Potassium carbonate	
Nitric acid	Nitrates		Calcium nitrate	
Sulphuric acid	hydrogencarbonates		Sodium hydrogencarbonate	
CATEGORIZIN	G SALTS DEPENDING	ON THEIR SOLUBILI	TY IN WATER	
SOLUBLE SALTS			INSOLUBLE SALTS	
Soluble salts are salts which completely dissolve in water to form a solution.		Insoluble salts are salts which do not dissolve completely in water and they form a residue when filtered.		
Soluble salts are usually prepared by meth crystallization.	ods which involve	,	sually prepared by methods which involve	
Crystallization is a process by which a solution is saturated by evaporating some of the solvent,			cess where an insoluble solid is formed olutions are mixed together.	
On cooling, the excess salt dissolved in the deposited as crystals.	hot solution is	The insoluble salt is formed as a precipitate in an aqueous solution which is filtered off, washed and dried.		
A crystal is a solid that has solidified in a d	efinite regular shape	A precipitate is an insoluble solid that separates from the solution.		

EXAMPLES OF SOLUBLE SALTS	COLOUR	EXAMPLES OF INSOLUBLE SALTS	COLOUR
Lead (II) nitrate	White	Lead (II) carbonate	White
Copper (II) sulphate	Blue	Copper (II) carbonate	Green
Copper (II) nitrate	Blue	Lead (II) sulphate	White
Iron (II) sulphate	Green	Iron (II) carbonate	Green
Copper (Chloride)	Green	Barium sulphate	White
Iron (III) sulphate	Brown/ yellow	Silver chloride	White
Iron (III) chloride	Brown/ yellow	Magnesium carbonate	White
Iron (III) nitrate	Brown/ yellow	Zinc carbonate	White
Formation of zinc sulphate		Formation of zinc carbonate by precipitation	
$Zn_{(s)}$ + $H_2SO_{4(aq)}$ \longrightarrow $ZnSO_{4(aq)}$ + $H_{2(g)}$		$Na_2CO_{3(aq)} + ZnCl_{2(aq)} \longrightarrow NaCl_{(aq)} + ZnCO_{3(s)}$	
	₂ O _(l)		ttion + Na ₂ SO _{4(aq)}

SOLUBLE SALTS	INSOLUBLE SALTS
ALL Sodium salts	
ALL potassium salts	
ALL ammonium salts	
ALL NITRATES form soluble salts	NO Nitrate salt is insoluble
ALL sulphates	Lead (ii) sulphate
Except	Barium sulphate
	Calcium sulphate
ALL chlorides	Lead (ii) chloride (soluble in hot water)
Except	Sliver chloride
	Mercury (i) chloride
Sodium carbonate	
Potassium carbonate	Except ALL CARBONATES are insoluble
Ammonium carbonate	
PREPARATION O	F SOLUBLE SALTS BY
1. ACTION OF AN ACID ON A METAL	
General equation Metal + Acid	Salt + Hydrogen

	T	
This method is not suitable for		The metals of potassium, sodium and calcium react
preparation of salts of highly		explosively with dilute acids
reactive metals for example;	DECATION	
• Potassium	BECAUSE	
• Sodium		
• Calcium	1, 01	
This method is only used to prepar	e salts of less reactive	e metals such as
• Aluminium		
• Zinc		
 Magnesium Iron		
	and have union a magnesia	um and diluta aulphuria acid
Magnesium sulphate can be prepar $Mg(s)$ + $H_2SO_{4(aq)}$		
Iron (ii) sulphate can be prepared by		
$Fe_{(s)}$ + $H_2SO_{4(aq)}$	$FeSO_{4(aq)}$ + $H_{2(g)}$	ia diate sulpiturio dela
EXPERIMENT: Preparation of zin	nc sulphate crystals	
✓ Dilute sulphuric acid is poured	in a beaker and granı	alated zinc is added.
✓ Effervescence occurs		
✓ If the reaction is slow, a little co	pper (II) sulphate solu	ation is added as a catalyst and the reactants are warmed
gently.	11 () 1	J
$Zn_{(s)}$ + $H_2SO_{4(aq)}$ ———	→ ZnSO _{4(aq)} +	H _{2(a)}
()	. 2	
when the reaction stops, more 2	and is added to make	sure that the acid is not left in considerable amounts.
✓ Excess zinc granules are filtered	l off.	
\checkmark The filtrate is gently heated in a	n evaporating dish to	boil off some water until crystals begin to form, when the
filtrate cools, on a glass rod, wh	ich is dipped into the	filtrate at regular intervals. The heat source is then
removed to allow cooling and fu	rther crystallization.	
✓ The crystals are filtered off and	then pressed gently b	etween filter papers to dry.
		OF SOLUBLE SALTS BY
2. ACTION OF AN ACID ON SO	LUBLE HYDROXIDE	OR CARBONATE
2 OLGC CHEMISTRY DEPT 2024		

MOB.0775 240 246P a g e

This method is used to prepare salts of potassium, sodium and ammonium					
PREPARATION OF;	(i) Potassium chloride				
	$KOH_{(aq)}$ + $HCl_{(aq)}$ $KCl_{(aq)}$ + $H_2O_{(l)}$				
	$K_2CO_{3(aq)}$ + $2HCl_{(aq)}$ $KCl_{(aq)}$ + $H_2O_{(l)}$ + $CO_{2(g)}$				
	(ii) Sodium nitrate				
	$NaOH_{(aq)}$ + $HNO_{3(aq)}$ - $NaNO_{3(aq)}$ + $H_2O_{(l)}$				
	$Na_2CO_{3(aq)}$ + $2HNO_{3(aq)}$ \longrightarrow $NaNO_{3(aq)}$ + $H_2O_{(l)}$ + $CO_{2(g)}$				
	(iii) Ammonium chloride				
	$NH_4OH_{(aq)}$ + $HCl_{(aq)}$ \longrightarrow $NH_4Cl_{(aq)}$ + $H_2O_{(l)}$				
	$(NH_4)_2CO_{3(aq)} + 2HCl_{(aq)} \longrightarrow 2NH_4Cl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$				
	(iv) Ammonium sulphate				
	$2NH_4OH_{(aq)}$ + $H_2SO_{4(aq)}$ - $NH_4)_2SO_{4(aq)}$ + $H_2O_{(l)}$				
	$(NH_4)_2CO_{3(aq)} + H_2SO_{4(aq)} - (NH_4)_2SO_{4(aq)} + H_2O_{(l)} + CO_{2(g)}$				

EXPERIMENT: Preparation of sodium sulphate crystals

- ✓ A known volume of sodium hydroxide solution is pipetted into a conical flask and 2 drops of phenolphthalein added.
- ✓ Dilute sulphuric acid is added from the burette to conical flask at intervals until the colour of the indicator changes to pink.

$$2NaOH_{(aq)}$$
 + $H_2SO_{4(aq)}$ - $Na_2SO_{4(aq)}$ + $2H_2O_{(1)}$

- ✓ Having noted the volume of the acid used, the solution is poured away as the indicator would colour the salt obtained from it.
- ✓ The whole process is repeated using the same volume of the solution of sulphuric acid and sodium hydroxide solution without adding the indicator.
- ✓ The solution is evaporated until saturation (when crystals begin to form on a clean glass rod, which is dipped into the solution and removed at regular intervals). This saturated salt solution is removed from the heat to enable further crystallization.
- ✓ The crystals are filtered off and then pressed gently between filter papers to dry.

PREPARATION OF SOLUBLE SALTS BY 3. ACTION OF AN ACID ON INSOLUBLE OXIDES OR HYDROXIDES This method is used to prepare Magnesium sulphate, zinc sulphate and lead (II) nitrate PREPARATION OF: Magnesium sulphate (i) $MgO_{(s)}$ $H_2SO_{4(aq)}$ MgSO_{4(aq)} $H_2O_{(1)}$ $Mg(OH)_{2(s)} +$ $H_2SO_{4(aq)}$ – MgSO_{4(aq)} $H_2O_{(1)}$ Zinc sulphate $ZnO_{(s)}$ ZnSO_{4(aq)} $H_2O_{(1)}$ $H_2SO_{4(aq)}$ $Zn(OH)_{2(s)} +$ $H_2SO_{4(aq)}$ – ZnSO_{4(aq)} $H_2O_{(1)}$ (iii) Lead (ii) nitrate PbO_(s) HNO_{3(aq)} $Pb(NO_3)_{2(aq)}$ $H_2O_{(1)}$ $Pb(OH)_{2(s)} +$ HNO_{3(aq)} $Pb(NO_3)_{2(aq)}$ $H_2O_{(1)}$

EXPERIMENT: Preparation of copper (II) sulphate crystals

- ✓ Copper (II) oxide is added to a beaker of warm dilute sulphuric acid and the mixture stirred gently.
- ✓ More of the oxide is added, little at a time until no more reacts, showing that all the acid has been neutralized.
 - $CuO_{(s)}$ $H_2SO_{4(aq)}$ CuSO_{4(aq)} $H_2O_{(1)}$
- ✓ Excess copper (II) oxide is filtered off and the filtrate evaporated until crystals begin to form when it cools, on a clean glass rod, which is dipped into the filtrate at regular intervals. The saturated salt solution is removed from the heat source and allowed ton cool to enable further crystallization of the salt.
- ✓ The crystals are filtered off and then pressed gently between filter papers to dry.

PREPARATION OF SOLUBLE SALTS BY

4. ACTION OF AN ACID ON SOLUBLE INSOLUBLE CARBONATES

Calcium (ii) nitrate

+ $2HCl_{(aq)}$

Calcium chloride

+ 2HNO_{3(aq)}

The salts of copper (ii) sulphate, copper (ii) nitrate, magnesium sulphate, zinc sulphate, calcium chloride and calcium nitrate are prepared by this method.

Calcium chloride and calcium nitrate are deliquescent and do not form crystals. Their solutions must be evaporated to dryness

PREPARATION OF: Copper (ii) sulphate CuCO_{3(s)} CuSO_{4 (aq)} + $H_2SO_{4(aq)}$ - $H_2O_{(1)}$ + $CO_{2(g)}$ Copper (ii) nitrate (ii) CuCO_{3(s)} + 2HNO_{3(aq)} $Cu(NO_3)_{2(aq)}$ + $H_2O_{(1)}$ + CO_{2(g)} Magnesium sulphate (iii) MgCO_{3(s)} MgSO_{4 (aq)} $H_2O_{(1)}$ + CO_{2(g)} + $H_2SO_{4(aq)}$ Zinc sulphate (iv) + CO_{2(g)} ZnSO_{4 (aq)} $ZnCO_{3(s)}$ + $H_2SO_{4(aq)}$ $H_2O_{(1)}$

 $Ca(NO_3)_{2(aq)}$

 $CaCl_{2(aq)}$

 $H_2O_{(1)}$

 $H_2O_{(1)}$

 $CO_{2(g)}$

+ CO_{2(g)}

(v)

(vi)

CaCO_{3(s)}

CaCO_{3(s)}

EXPERIMENT: Preparation of lead (II) nitrate crystals

- ✓ Lead (ii) carbonate is added little at a time to dilute nitric acid in a beaker.
- ✓ Effervescence occurs as carbon dioxide is evolved.
- ✓ More carbonate is added until no more reacts, showing that all the acid has reacted.

 $PbCO_{3(s)}$ + $2HNO_{3(aq)}$ - $Pb(NO_3)_{2(aq)}$ + $H_2O_{(l)}$ + $CO_{2(g)}$

- ✓ The excess carbonate is filtered off and the filtrate evaporated until crystals begin to form when it cools, on a clean glass rod, which is dipped into the filtrate at regular intervals.
- ✓ The crystals are filtered off and then pressed gently between filter papers to dry.

Salts to which this method applies APPLIES to both soluble and insoluble salts Another name for this method Direct synthesis Salts prepared by direct synthesis Used to prepare binary salts, for example; ✓ Chlorides eg anhydrous iron (iii) chloride ✓ Bromides eg aluminium bromide ✓ Sulphides eg iron (ii) sulphide Definition of direct synthesis Direct synthesis is the method of preparing soluble and insoluble salts directly from their elements.

PREPARATION OF ANHYDROUS IRON (III) CHLORIDE				
Conditions for the reaction • Dry chlorine gas • Heating is required				
Equation for the reaction	$2Fe_{(s)} + 3Cl_{2(g)} \longrightarrow 2FeCl_{3(s)}$			
Colour of iron (iii) chloride	BROWN			

PREPARATION OF ALUMINIUM CHLORIDE				
Conditions for the reaction • Dry chlorine gas • Heating is required				
Equation for the reaction	$2Al_{(s)} + 3Cl_{2(g)} \longrightarrow 2AlCl_{3(s)}$			
Colour of aluminium chloride	WHITE			

PREPARATION OF IRON (II) SULPHIDE				
Conditions for the reaction • Heating is required				
Observation made	The mixture glows when heated forming a black solid.			
Equation for the reaction	$Fe_{(s)} + S_{(g)} \longrightarrow FeS_{(s)}$			
Colour of iron (ii) sulphide	BLACK			

6. PREPARATION OF INSOLUBLE SALTS BY PRECIPITATION		
Method also called	Double decomposition reaction	
What is involved in this method?	In this method, aqueous solutions of two soluble compounds are mixed together to give a mixture of a soluble compound and an insoluble salt (precipitate)	
PREPARATION OF INSOLUBLE SALTS	(i) Barium sulphate $BaCl_{2(aq)}$ + $Na_2SO_{4(aq)}$	
	(ii) Lead (II) chloride (It is soluble in hot water)	
	$Pb(NO_3)_{2(aq)}$ + $NaCl_{(aq)}$ \longrightarrow $PbCl_{2(s)}$ + $2NaNO_{3(aq)}$	
	(iii) Calcium carbonate	
	$CaCl_{2(aq)}$ + $Na_2CO_{3(aq)}$ \longrightarrow $CaCO_{3(s)}$ + $2NaCl_{(aq)}$	
	(iv) Lead (ii) bromide	
	$Pb(NO_3)_{2(aq)}$ + $2NaBr_{(aq)}$ \longrightarrow $PbBr_{2(s)}$ + $2NaNO_{3(aq)}$	
	(v) Calcium sulphate $Ca(NO_3)_{2(aq)}$ + $Na_2SO_{4(aq)}$ $CaSO_{4(s)}$ + $2NaNO_{3(aq)}$	
EXPERIMENT: Preparation of lead (II) sulphate crustals		

EXPERIMENT: Preparation of lead (II) sulphate crystals

✓ Dilute sulphuric acid is added to lead (II) nitrate solution in a beaker and the mixture is stirred. A white precipitate is formed immediately. The white precipitate is the insoluble lead (II) sulphate.

- ✓ The mixture is filtered to obtain lead(II) sulphate as the residue in the filter funnel..
- ✓ The residue, lead (II) sulphate is then washed several times with hot distilled water to remove soluble impurities.
- ✓ The precipitate is allowed to dry on a filter paper.

-

NOTE: MAGNESIUM SULPHATE solution may be used instead of SULPHURIC ACID $Pb(NO_3)_{2(aq)} + MgSO_{4(aq)} \longrightarrow PbSO_{4(s)} + Mg(NO_{3)_2 (aq)}$

HYDROLYSIS OF SALTS

Why does a solution of potassium carbonate show basic characteristics?	This is because when in aqueous solution, potassium carbonate hydrolyses in water to form a mixture of a strong alkali (KOH) and a weak acid (H ₂ CO ₃). The resultant solution is alkaline because the concentration of hydroxyl ions from the strong alkali is greater than the concentration of hydrogen ions from the weak acid. The strong alkali completely ionizes in solution and the weak acid under
	goes incomplete ionization.
Equation for the reaction	$K_2CO_{3(s)} + 2H_2O_{(l)} \longrightarrow 2KOH_{(aq)} + H_2CO_{3(aq)}$

Why does a solution of ammonium chloride show acidic characteristics?	This is because when in aqueous solution, ammonium chloride hydrolyses in water to form a mixture of a strong acid (HCl) and a weak alkali (NH ₄ OH). The resultant solution is acidic because the concentration of hydrogen ions from the strong acid is greater than the concentration of hydroxyl ions from the weak alkali. The strong acid completely ionizes in solution and the weak alkali under
	goes incomplete ionization.
Equation for the reaction	$NH_4Cl_{(s)} + 2H_2O_{(l)} \longrightarrow NH_4OH_{(aq)} + HCl_{(aq)}$

REACTIONS FOR IONIC SALTS

When an ionic salt dissolves in water, its ions separate into free ions. For example; when zinc sulphate is dissolved in water, zinc ions (Zn^{2+}) and sulphate ions (SO_4^{2+})

IONIC EQUATIONS

Ionic equations describe chemical changes by showing only the reacting ions.

Three steps are followed when writing ionic equations;

	8 1 /
STEP 1	Write the formal equation.
STEP 2	Write down all the ions in the equation.
STEP 3	The ionic equation is written by omitting the identical ions which appear on both sides of the equation.

Important notes to take;

NOTE 1	Gases do not ionize.
NOTE 2	Solids do not ionize. (Precipitates do not ionize)
NOTE 3	Water does not ionize.
NOTE 4	Only aqueous solutions ionize.

EXERCISE

- 1. Write ionic equations for the following reactions
- i) Copper (II) sulphate solution is added to sodium carbonate solution
- ii) Sodium hydroxide solution is added to lead (II) nitrate solution
- iii) Zinc powder is added to copper (II) sulphate solution
- iv) Chlorine gas is passed through aqueous iron (II) chloride
- v) Dilute hydrochloric acid is added to solid calcium carbonate
- 2. Identify and write chemical formulae of acids found in the following substances
 - *i)* Bee sting
 - ii) Wasp sting
 - iii) Passion fruit
 - iv) Carbonated beverages such as soda
 - v) Tea leaves
 - vi) Yoghurt
 - vii) Lemon
 - viii) Tarmarind
 - *ix)* Beet root
 - *x) Tomatoes*
 - xi) Onions
 - xii) Mangos
- 3. Jane was returning home from school at 5:00 pm and she received a wasp sting as she was trying to hit ripened mangoes from a tree on the roadside.
 - i) State what Jane experienced after being stung.
 - *ii)* State the chemistry behind Jane's experience
 - iii) What kind of first aid would you suggest or give to Jane after that sting?

Note:

- 1. Keep on visiting the school website for more content from the Chemistry Department.
- 2. Print out these notes but make summary of the same and make research on the same. Answer the questions above.
- 3.Do research on the Periodic Table and write down notes on the same.

END